
Risk-parameter estimation in volatility

models

Christian Francq

CREST
and

University Lille 3 (EQUIPPE), BP 60149
59653 Villeneuve d’Ascq cedex, France

e-mail: christian.francq@univ-lille3.fr

and

Jean-Michel Zakoïan

CREST, 15 Boulevard Gabriel Peri
92245 Malakoff Cedex, France

and
University Lille 3 (EQUIPPE)

e-mail: zakoian@ensae.fr
∗

Abstract: This paper introduces the concept of risk parameter in con-
ditional volatility models of the form ǫt = σt(θ0)ηt and develops statis-
tical procedures to estimate this parameter. For a given risk measure
r, the risk parameter is expressed as a function of the volatility co-
efficients θ0 and the risk, r(ηt), of the innovation process. A two-step
method is proposed to successively estimate these quantities. An alter-
native one-step approach, relying on a reparameterization of the model
and the use of a non Gaussian QML, is proposed. Asymptotic results
are established for smooth risk measures as well as for the Value-at-Risk
(VaR). Asymptotic comparisons of the two approaches for VaR estima-
tion suggest a superiority of the one-step method when the innovations
are heavy-tailed. For standard GARCH models, the comparison only
depends on characteristics of the innovations distribution, not on the
volatility parameters. Monte-Carlo experiments and an empirical study
illustrate these findings.
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1. Introduction

Modern financial risk management generally focuses on risks measures based
on distributional information. Compared to traditional approaches relying
on the marginal distribution of returns, more sophisticated approaches view
risk as a stochastic process. For instance, conditional Value-at-Risk (VaR)
- arguably the most widely used measure since the 1996 amendment of the
Basel Capital Accord - is defined as the opposite of a quantile of the returns
(or profit & losses, P&L, variables) conditional distribution. Another pop-
ular risk measure is the conditional Expected Shortfall which, conditional
on the past returns, measures the average loss when the loss is above the
VaR1. Many econometric approaches have been proposed in the finance and
statistical literatures for measuring conditional risk.

A crucial issue that arises in this context is how to evaluate the perfor-
mance of conditional risk estimators. Comparison of the performances of
estimators of parameters based on the asymptotic theory is standard. But
comparing the performances of VaR estimators, for instance, is more intricate
because the conditional VaR is a random process, not a parameter.

The first objective of this paper is to introduce a concept of risk parameter
in conditional volatility models. The risk parameter can be interpreted as a
summary of conditional risk. Summaries of unconditional risk (such as the
VaR based on historical simulation) are commonly used but they do not
account for the dynamics of risk. By contrast, risk parameters are vector
coefficients which take into account the returns dynamics and for which an
asymptotic theory of estimation can be derived.

To be more specific, consider a conditional volatility model of the form

ǫt = σt(θ0)ηt, (1.1)

where ǫt denotes the log-return, σt is a volatility process, that is a positive
measurable function of the past log-returns, θ0 is a finite-dimensional param-
eter and (ηt) is a sequence of independent and identically distributed (iid)
random variables, ηt being also independent of the past returns. Consider a
risk measure, r, satisfying the assumption of positive homogeneity, such as
the VaR or the Expected Shortfall. Then the conditional risk of ǫt is given
by

rt−1(ǫt) = σt(θ0)r(ηt),

1 In the risk management literature, the term "conditional VaR" sometimes refer to
what many authors, including us in this article, call Expected Shortfall. In this paper, we
call conditional risks the risks computed conditional on the past returns.
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where r(ηt) is a constant. In most parametric volatility models, multiplying
the volatility by a constant amounts to modifying the parameter value. Under
this assumption, we have

rt−1(ǫt) = σt(θ
∗
0), where θ∗0 = H{θ0, r(ηt)} (1.2)

for some function H which is specific to the model under consideration. In
this setting, we call θ∗0 the risk parameter associated to the risk function r. It
incorporates not only the volatility parameters but also the (unconditional)
risk of the innovation process (ηt). When r is the risk associated with the VaR
at some level α ∈ (0, 1), the vector θ∗0 is referred to as the VaR parameter at
level α.

Deriving an asymptotic theory for estimators of risk parameters is the
second objective of this article. Two estimation procedures will be studied
and compared. A two-step approach relies on the expression of θ∗0 in (1.2).
Under the identifiability assumption

Eη2t = 1, (1.3)

a consistent and asymptotically normal (CAN) estimator θ̂ of the parameter
θ0 can be obtained by standard methods for conditional volatility models, the
most widely used being the Gaussian Quasi-Maximum Likelihood (QML). In
a second step, an estimator r̂ of the innovation risk r(ηt) can be constructed,
under conditions to be discussed, from the residuals η̂t = ǫt/σt(θ̂) of the first
step. A consistent estimator H{θ̂, r̂} of the risk parameter, θ∗0, will be de-
duced (under smoothness assumptions on the function H). The asymptotic
distribution of this estimator will follow from the joint asymptotic distribu-
tion of {θ̂, r̂}.

An alternative strategy of estimation introduced in this article relies on
a reparameterization of the conditional volatility model. The multiplicative
form of model (1.1) generally allows us to rewrite it as

ǫt = σt(θ
∗
0)η

∗
t , with r(η∗t ) = 1.

The latter equality replaces the standard assumption (1.3). The interest of
such a representation is that, if a consistent estimator θ̂∗0 of θ∗0 can be ob-
tained, the conditional risk rt−1(ǫt) of ǫt can be estimated in one step by
σt(θ̂

∗
0).

Estimation of conditional volatility models under moment conditions dif-
ferent from (1.3) has been studied by Berkes and Horváth (2004), Francq,
Lepage and Zakoian (2011), Zhu and Ling (2011), Francq and Zakoian (2012).
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In the framework of this paper, the condition r(η∗t ) = 1 is not necessarily
a moment condition. We propose a QML approach based on non-Gaussian
densities depending on the risk function r. A case of particular importance is
the VaR at a given level α: the identifiability condition consists in setting an
appropriate quantile of the distribution of η∗t to unity. It turns out that the
only asymptotically valid QML criterion, that is, ensuring the consistency of
the QML estimator of θ∗0 whatever the distribution of η∗t , takes the form of
a non linear quantile regression criterion.

The third objective of this article is to compare the one-step and two-step
estimators of the VaR parameter. As we will see, the assumptions required
for the CAN of the two estimators are quite different. When such assump-
tions are met, the asymptotic variances can be compared. Surprisingly, for
important subclasses of conditional volatility models the ranking of the two
methods, in term of asymptotic efficiency, depends on α and on simple char-
acteristics of the law of ηt, but not on the volatility parameter θ0.

Most of previous work on statistical inference for GARCH-type models
dealt exclusively with the estimation of volatility parameters. The asymp-
totic theory of the QML estimation for volatility parameters has been exten-
sively studied, in particular for the GARCH(1,1) by Lee and Hansen (1994),
Lumsdaine (1996), for the GARCH(p, q) by Berkes, Horváth and Kokoszka
(2003) and Francq and Zakoïan (2004), for general models by Mikosch and
Straumann (2006), Straumann and Mikosch (2006), Bardet and Winten-
berger (2009). For the VaR parameter, it turns out that the QML criterion
can be written under the form of a M-estimation criterion which is similar
to those introduced in the quantile regression literature (see Koenker (2005)
for a comprehensive book on quantile regression, and see Xiao and Koenker
(2009), Xiao and Wan (2010) for recent applications to linear GARCH mod-
els) and in the least-absolute deviations (LAD) time series literature (see
Davis, Knight and Liu (1992), Davis and Dunsmuir (1997), Breidt, Davis
and Trindade (2001), Ling (2005)).

The paper is organized as follows. In Section 2 we introduce the concept
of risk parameter in a general conditional volatility model, and we discuss
identifiability issues. Section 3 is devoted to the asymptotic properties of
non-Gaussian QML estimators for general smooth risk measures r. Section 4
is devoted to the estimation of the VaR parameter. The smoothness assump-
tions introduced in Section 3 being non satisfied by the VaR, the asymptotic
properties of the one-step estimator are established in a completely different
manner. The asymptotic properties of the two-step method are also estab-
lished, and are compared with those of the one-step estimator. In Section
5, we consider two extensions. In particular, we consider estimation of the
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conditional Expected Shortfall. A Monte-Carlo study and applications on
real financial data are provided in Section 6. Section 7 concludes. Proofs are
collected in the Appendix.

2. Risk parameter in volatility models

Most conditional volatility models are of the form
{
ǫt = σtηt
σt = σ(ǫt−1, ǫt−2, . . . ; θ0)

(2.1)

where (ηt) is a sequence of iid random variables, ηt being independent of
{ǫu, u < t}, θ0 ∈ R

m is a parameter belonging to a parameter space Θ,
and σ : R

∞ × Θ → (0,∞). When Eηt = 0 and Eη2t = 1, the variable
σ2t is generally referred to as the volatility of ǫt. However, we will not make
such moment assumptions in this section and the following ones. A leading
model, the most widely used among practitioners, is the GARCH(1,1) model
of Engle (1982) and Bollerslev (1986), defined by

σ2t = ω0 + α0ǫ
2
t−1 + β0σ

2
t−1, (2.2)

where θ0 = (ω0, α0, β0)
′ ∈ (0,∞) × [0,∞) × [0, 1). For this model we have

σ2t =
∑∞

i=1 β
i−1
0 (ω0 + α0ǫ

2
t−i), which is of the form (2.1).

It is assumed throughout that

A0: There exists a function H such that for any θ ∈ Θ, for any K > 0,
and any sequence (xi)i

Kσ(x1, x2, . . . ; θ) = σ(x1, x2, . . . ; θ
∗), where θ∗ = H(θ,K).

Most conditional volatility models are such that forK ≥ 1, θ∗ ≥ θ componen-
twise. For instance, in the GARCH(1,1) case we have θ∗ = (K2ω,K2α, β)′

with standard notation. The parameter θ0 can thus be interpreted as a volatil-
ity parameter in the sense that the larger θ0 the larger the volatility.

Now we define the notion of risk parameter. Following the terminology of
Artzner, Delbaen, Eber, and Heath (1999), let r denote a risk measure, that
is, a mapping from the set of the real random variables to R. Assume that
r is nonnegative, positively homogenous2 and law-invariant 3. Then the risk
of ǫt conditional on {ǫu, u < t} is given by

rt−1(ǫt) = σ(ǫt−1, ǫt−2, . . . ; θ0)r(ηt). (2.3)

2that is, r(λX) = λr(X) for any risk variable X and any λ > 0.
3that is, the risk r(X) of any risk variable X only depends on the distribution of X.
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Now, assuming r(ηt) 6= 0, let η∗t = ηt/r(ηt) and let θ∗0 = H(θ0, r(ηt)). Under
A0, the model can be reparameterized as

{
ǫt = σ∗t η

∗
t , r(η∗t ) = 1,

σ∗t = σ(ǫt−1, ǫt−2, . . . ; θ
∗
0).

(2.4)

Because the conditional risk of ǫt is now simply

rt−1(ǫt) = σ(ǫt−1, ǫt−2, . . . ; θ
∗
0),

θ∗0 will be called the risk parameter.

Example 2.1 (VaR parameter). An important example is the VaR, which
is the most standard risk measure used in the current regulations. For a
continuous risk variable X with quantile function F−1

X , the VaR at level α,
with α ∈ (0, 1), is given by r(X) = −F−1

X (α). The conditional VaR of the
process (ǫt) at risk level α ∈ (0, 1), denoted by VaRt(α), is defined by

Pt−1[ǫt < −VaRt(α)] = α,

where Pt−1 denotes the historical distribution conditional on {ǫu, u < t}.
When (ǫt) satisfies (2.1), the theoretical VaR is then given by

VaRt(α) = −σ(ǫt−1, ǫt−2, . . . ; θ0)F
−1
η (α)

where Fη is the probability distribution function of ηt. Let α be small enough
so that F−1

η (α) < 0. Thus (2.3) holds with rt−1(ǫt) = VaRt(α) and r(ηt) =
−F−1

η (α). Now suppose that the volatility model is the GARCH(1,1) model
(2.2). Then the VaR parameter at level α is given by θ∗0 = (K2ω0,K

2α0, β0)
′

with K = −F−1
η (α). This coefficient takes into account the dynamics of the

GARCH process through the volatility parameters, but also the lower tail of
the innovations distribution.

Example 2.2 (Expected Shortfall parameter). Another popular mea-
sure of financial risk is the expected shortfall (ES). One reason for its
attractiveness is that, in contrast to the VaR, the ES satisfies the sub-
additivity property (see Acerbi and Tasche (2002)). For a continuous risk
variable X such that E(X−) < ∞, the ES at level α ∈ (0, 1) is given by
r(X) = −E[X | X ≤ F−1

X (α)]. The conditional ES of the process (ǫt) at risk
level α, denoted by ESt(α), is defined by

ESt(α) = −Et−1[ǫt | ǫt < −VaRt(α)],
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Table 1

VaR and ES parameters at the 1% level for GARCH(1,1) models

Errors distribution ηt ∼ N (0, 1) ηt ∼ 1√
2
St4

Volatility parameter (1, 0.05, 0.9) (1, 0.04, 0.9)
VaR parameter (5.41, 0.27, 0.9) (7.01, 0.28, 0.9)
ES parameter (7.10, 0.36, 0.9) (13.63, 0.55, 0.9)

where Et−1 denotes the expectation conditional on {ǫu, u < t}. When (ǫt)
satisfies (2.1), the theoretical ES is then given by

ESt(α) = σ(ǫt−1, ǫt−2, . . . ; θ0)ESη(α), (2.5)

where ESη(α) is the ES at level α of ηt, which is of the form (2.3).
For the GARCH(1,1) model (2.2), the ES parameter at level α is θ∗0 =
(K2ω0,K

2α0, β0)
′ with K = ESη(α).

Example 2.3 (VaR and ES parameters for two GARCH(1,1)). For
the sake of illustration, consider two GARCH(1,1) models with, respectively,
standard Gaussian and standardized Student(4) innovations. The volatility
parameter, as displayed in Table 1, is larger for the Gaussian-innovation
model than for the Student-innovation model. In contrast, the VaR param-
eter at level 1% is slightly larger for the second model. In other words, the
first model is more volatile but less risky than the second one for the VaR at
1%. The difference between the two models is even more pronounced when
ES-parameters at the level 1% are considered. In particular, the coefficient
α∗
0, measuring the impact of a large squared return on the risk of the next pe-

riod, is 1.5 larger in the model with student errors than in the conditionally
Gaussian model.

We consider estimating θ∗0 by an appropriate QML method in the next
section.

3. QML estimators of general risk parameters

In this section, we consider QML estimation of Model (2.4). The usual iden-
tifiability condition Eη∗2t = 1 being replaced by r(η∗t ) = 1, we will define a
non Gaussian QML estimator.

Given observations ǫ1, . . . , ǫn, and arbitrary initial values ǫ̃i for i ≤ 0, we
define, under assumptions given below

σ̃t(θ) = σ(ǫt−1, ǫt−2, . . . , ǫ1, ǫ̃0, ǫ̃−1, . . . ; θ).
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This random variable will be used to approximate

σt(θ) = σ(ǫt−1, ǫt−2, . . . , ǫ1, ǫ0, ǫ−1, . . . ; θ).

We choose an arbitrary positive density h which can be called instrumental
density, and define the QML criterion

Q̃n(θ) =
1

n

n∑

t=1

g(ǫt, σ̃t(θ)), g(x, σ) = log
1

σ
h
(x
σ

)
. (3.1)

Let the QMLE
θ̂∗n = argmax

θ∈Θ
Q̃n(θ) (3.2)

for some compact subspace Θ of Rm. This estimator is the standard Gaussian
QMLE when h is the standard Gaussian density φ. However, the Gaussian
QMLE is in general an inconsistent estimator of θ∗0, unless if, for instance,
the risk measure is r(X) =

√
E(X2).

To derive the asymptotic properties of θ̂∗n we introduce the following as-
sumptions.

A1: (ǫt) is a strictly stationary and ergodic solution of Model (2.4).

A2: For any real sequence (xi), the function θ 7→ σ(x1, x2, . . . ; θ) is contin-
uous. Almost surely, σt(θ) ∈ (ω,∞] for any θ ∈ Θ and for some ω > 0.
Moreover, σt(θ

∗
0)/σt(θ) = 1 a.s. iff θ = θ∗0.

In addition, we assume that the function σ → Eg(η∗0 , σ) is valued in
[−∞,+∞) and has a unique maximum at 1:

A3: Eg(η∗0 , σ) < Eg(η∗0 , 1), ∀σ > 0, σ 6= 1.

A4: h is continuous on R, differentiable except on a finite set A, and
there exist constants δ ≥ 0 and C0 > 0 such that for all u ∈ Ac,
|uh′(u)/h(u)| ≤ C0(1 + |u|δ) with E|η∗0 |δ < ∞. Moreover, E|ǫ0|s < ∞
for some s > 0.

A5: There exist a random variable C1 measurable with respect to {ǫu, u <
0} and a constant ρ ∈ (0, 1) such that supθ∈Θ |σt(θ)− σ̃t(θ)| ≤ C1ρ

t.

Theorem 3.1 (Consistency of the risk parameter estimator). If A0-
A5 hold, then the QMLE defined by (3.1) and (3.2) satisfies

θ̂∗n → θ∗0, a.s.
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The condition on h in A4 is mild; it vanishes for instance when the instru-
mental density has the form h(u) = K1|u|λ exp{K2|u|r}, for some constants
r, λ,K1,K2. In this case, the inequality is satisfied with δ = r. Assumptions
A2 and A5 can be simplified for specific forms of σt: for instance if the
model is a standard GARCH, A2 reduces to standard assumptions on the
lag polynomials of the volatility and A5 can be directly verified. Note also
that the only moment assumption on the observed process is the existence of
a small moment in A4, which is automatically satisfied under A1 in standard
GARCH models.

We now discuss Assumption A3. Many risks measures involve a moment
of a function of the risk variable X, in the sense that

r(X) = 1 iff E{ψ(X)} = 0 (3.3)

for some measurable function ψ : R → R. The following result shows that,
for such risk measures, A3 can be omitted provided the QML instrumental
density is appropriately chosen.

Proposition 3.1 (Choice of the instrumental density). Let r(·) satisfy-
ing (3.3). Assume A4 holds with A = ∅. Then A3 holds for any distribution
of η∗0 satisfying r(η∗0) = 1 iff the density h is such that

x{log h(x)}′ = [λψ(x) − 1] , for all x (3.4)

and for some constant λ 6= 0.

This result provides a practical way to choose the QML density h, as
illustrated in the next examples.

Example 3.1. Let r(X) =
√
E(X2). Then we have ψ(X) = 1 − X2 and,

for any constant λ > 0, by solving (3.4) we find

h(x) ∝ |x|−(1−λ) exp(−λx2/2). (3.5)

For λ = 1 the assumption A4 is satisfied and h is the density of the stan-
dard Gaussian distribution. Thus, we retrieve the Gaussian likelihood for the
standard identifiability condition E(η∗2t ) = 1. It can be seen that any density
h of the form (3.5) provides the same QMLE, it is thus not restrictive to take
λ = 1.

Example 3.2. More generally, let r(X) = ‖X‖s = (E|X|s)1/s where s is a
positive number. This risk measure has interest, for s < 2, when the variable
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X has an infinite second-order moment. In this case ψ(X) = 1 − |X|s and
we find , for λ > 0 and for some constant c,

h(x) ∝ |x|−(1−λ) exp(−λ|x|s/s). (3.6)

For λ = 1, the assumption A4 is satisfied.

Example 3.3 (Example 2.1 continued). When the measure of risk is the
VaR at level α, we have r(X) = −F−1

X (α). Suppose that the distribution of
the risk variable X is symmetric and α ∈ (0, 0.5). Thus (3.3) is satisfied with
ψ(X) = 1{|X|>1} − 2α. Solving (3.4) yields

h(x) = hα(x) = λα(1 − 2α)|x|2λα−1{|x|−λ
1{|x|>1} + 1{|x|≤1}} (3.7)

for some positive constant λ. The choice of λ does not matter, any value
leading to the same θ̂∗n. By choosing λ = (2α)−1, the density is defined on R

and satisfies A4. Since h is not differentiable everywhere, the assumptions
of Proposition 3.1 are not satisfied. However, it will be shown in the next
section that, under mild additional assumptions on the distribution of η0,
Assumptions A3 and A4 of Theorem 3.1 hold true.

To show the asymptotic normality of θ̂∗n we need additional assump-
tions which, for the reader’s convenience, are deferred to the appendix
(see A6-A10 in Appendix A.1). Note that, for most classical GARCH for-
mulations, A7 reduces to standard assumptions on lag polynomials and
that A8 and A10 can be directly verified. Let g1(x, σ) = ∂g(x, σ)/∂σ,
g2(x, σ) = ∂g1(x, σ)/∂σ.

Theorem 3.2 (Asymptotic normality). Under A0-A10 and if
Eg2(η

∗
0 , 1) 6= 0 then

√
n
(
θ̂∗n − θ∗0

)
L→ N (0, 4τ2h,f I

−1),

where

I = I(θ∗0) = E

(
1

σ4t

∂σ2t
∂θ

∂σ2t
∂θ′

(θ∗0)

)
and τ2h,f =

Eg21(η
∗
0 , 1)

{Eg2(η∗0 , 1)}2
.

Theorem 3.2 does not apply to the VaR because the differentiability as-
sumption in A9 is not satisfied for densities h of the form (3.7).
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4. Estimating the conditional VaR

4.1. One-step VaR estimation

To estimate in one step the conditional VaR at level α, as defined in Example
2.1, we first need to reparameterize Model (2.1). If α is not too large (more
precisely α < P (η0 > 0)), from P [ηt < F−1(α)] = α we deduce P [η∗t <
−1] = α where η∗t = −ηt/F−1(α). Letting θ0,α = θ∗0 = H(θ0,−F−1(α)),
under A0, the model can be reparameterized as

{
ǫt = σ∗t η

∗
t , P [η∗t < −1] = α,

σ∗t = σ(ǫt−1, ǫt−2, . . . ; θ0,α).
(4.1)

The theoretical VaR is now given by

VaRt(α) = σt(θ0,α). (4.2)

We will thus call θ0,α the VaR parameter at level α.
Define a QMLE of θ0,α by

θ̂n,α = argmax
θ∈Θ

n∑

t=1

log
1

σ̃t(θ)
hα

(
ǫt

σ̃t(θ)

)
(4.3)

where hα is defined by (3.7). The following corollary of Theorem 3.1 shows
that a one-step consistent estimator of the VaR parameter, not requiring any
estimation of the quantile function of the innovations ηt, is given by

V̂aRt(α) = σ̃t(θ̂n,α). (4.4)

Corollary 4.1 (Consistency of the VaR parameter estimator). Let
(ǫt) be a strictly stationary and ergodic solution of (4.1), where the distri-
bution of η∗0 is symmetric, satisfies the moment condition E| log |η∗0 || < ∞,
and admits a density in a neighborhood of 1. If A0, A2 and A5 hold and if
E|ǫ0|s <∞ for some s > 0, then, for all α ∈ (0, 1/2), the QMLE defined by
(4.3) satisfies

θ̂n,α → θ0,α, a.s.

The non-Gaussian QML estimator of the VaR parameter is also related
to estimators introduced in the quantile regression literature (see references
in the introduction). Let ρα(u) = u(α − 1{u≤0}). Then, from the proof of
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Corollary 4.1 it can be seen that

θ̂n,α = argmin
θ∈Θ

1

n

n∑

t=1

log

( |ǫt|
σ̃t(θ)

)
1{|ǫt|>σ̃t(θ)} − 2α log

( |ǫt|
σ̃t(θ)

)

= argmin
θ∈Θ

1

n

n∑

t=1

ρ1−2α

{
log

( |ǫt|
σ̃t(θ)

)}
. (4.5)

To interpret this expression, note that the first equation in Model (4.1) can
be equivalently written as

log |ǫt| = log σ∗t + log |η∗t |, P [log |η∗0 | < 0] = 1− 2α (4.6)

under the assumption of a symmetric distribution for η∗0 . Model (4.6) resem-
bling a quantile regression model, it is not surprising to get an estimator of
the form (4.5). An important difference with the quantile regression or au-
toregression, however, is that σ̃t(θ) is not assumed to be a linear combination
of explanatory variables, or past observables.

To study the asymptotic distribution of θ̂n,α we need the following addi-
tional assumption.

A11: The density f∗ of η∗0 is continuous at 1 and satisfies f∗(1) > 0 and
M = supx∈R |x|f∗(x) <∞.

Theorem 4.1 (Asymptotic normality). Under the assumptions of Corol-
lary 4.1, A6-A8 and A10-A11, there exists a sequence of local minimizers
θ̂n,α of the criterion defined in (4.5) satisfying

√
n(θ̂n,α − θ0,α)

d→ N
(
0,Ξα :=

2α(1 − 2α)

4f∗2(1)
J−1
α

)
,

where Jα = EDt(θ0,α)D
′
t(θ0,α) and Dt(θ) = σ−1

t (θ)∂σt(θ)/∂θ.

Let Ξ̂α denote a consistent estimator of the asymptotic variance Ξα. The
delta method thus suggests a (1−α0)% confidence interval for VaRt(α) whose
bounds are

σ̃t(θ̂n,α)±
Φ−1
1−α0/2√
n

{
∂σ̃t(θ̂n,α)

∂θ′
Ξ̂α

∂σ̃t(θ̂n,α)

∂θ

}1/2

, (4.7)

where Φ−1
α0

denotes the α0-quantile of the standard Gaussian distribution.
Drawing such confidence intervals allows to underline that the VaR evalua-
tion is subject to estimation risk. Even when the model is correctly specified,
the market risk, as measured by the theoretical VaR defined by (4.2), is not
known with exactness, but is likely to belong to the confidence interval (4.7).
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4.2. Two-step VaR estimation

In this section, we consider the usual approach for estimating the VaR in
Model (2.1) under the identifiability condition

Eη2t = 1. (4.8)

This approach involves two steps. In a first step, the model is estimated by the
standard QMLE and, in a second step, the theoretical quantile ξα := F−1

η (α)

is estimated using the estimated rescaled innovations. More precisely, let θ̂n
denote the Gaussian QMLE of θ0 in Model (2.1) under the constraint (4.8),
let

η̂t =
ǫt

σ̃t(θ̂n)
,

and let ξn,α denote the empirical α-quantile of η̂1, . . . , η̂n.
An estimator of the VaR at level α is then given by

ṼaRt(α) = −σ̃t(θ̂n)ξn,α = σ̃t{H(θ̂n,−ξn,α)}

under A0 and provided −ξn,α > 0. A comparison of the VaR estimators

ṼaRt(α) and V̂aRt(α) defined in (4.4) can then be based on the asymptotic
accuracies of the estimators θ̂n,α and H(θ̂n,−ξn,α) of θ0,α.

Contrary to the one-step estimator, the resulting two step estimator of the
VaR does not take advantage of the (hypothesized) symmetry of the errors
distribution. An estimator exploiting this additional information is

˜̃
VaRt(α) = σ̃t(θ̂n)ξ̃n,1−2α = σ̃t{H(θ̂n, ξ̃n,1−2α)}

where ξ̃n,1−2α is the empirical (1− 2α)-quantile of |η̂1|, . . . , |η̂n|.
The next result gives the joint asymptotic distributions of (θ̂′n,−ξn,α) and

(θ̂′n, ξ̃n,1−2α).

Theorem 4.2. Assume ξα < 0, Eη2t = 1 and κ4 := Eη4t <∞. Suppose that
η1 admits a density f in a neighborhood of ξα. Let A1, A5, A8 hold. Let
A2, A6, A7 and A10 hold with δ = 2 and θ∗0 replaced by θ0. Then
( √

n
(
θ̂n − θ0

)
√
n(ξα − ξn,α)

)
L→ N (0,Σα), Σα =

(
κ4−1
4 J−1 λαJ

−1Ω
λαΩ

′J−1 ζα

)
,

where Ω = E(Dt), J = E(DtD
′
t) with Dt = Dt(θ0), and

λα = ξα
κ4 − 1

4
+

pα
2f(ξα)

, ζα = ξ2α
κ4 − 1

4
+
ξαpα
f(ξα)

+
α(1 − α)

f2(ξα)
.
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Fig 1. Asymptotic variances ζα in dotted lines, and α(1− α)/f2(ξα) in full line,
for a standard Gaussian distribution (left panel) and the standardized GED(ν) with
ν = 0.25 (right panel).

with pα = E
(
η211{η1<ξα}

)
− α.

Under the additional assumption that η1 is symmetrically distributed, we
have

√
n

(
θ̂n − θ0

ξ̃n,1−2α + ξα

)
L→ N (0, Σ̃α), Σ̃α =

( κ4−1
4 J−1 −λαJ−1Ω

−λαΩ′J−1 ζ̃α

)

where

ζ̃α = ξ2α
κ4 − 1

4
+
ξαpα
f(ξα)

+
2α(1 − 2α)

4f2(ξα)
= ζα − α

2f2(ξα)
.

Remark: The asymptotic variance ζα of the empirical quantile of the stan-
dardized residuals η̂t is the sum of α(1− α)/f2(ξα), which can be interpreted
as the asymptotic variance of the empirical α-quantile of the ηt’s, and a term
due to the estimation of θ0,α. The same additional term appears in ζ̃α. Un-
expectedly, this term measuring the effect of estimation can be negative. For
instance, for a standard Gaussian distribution we have

ξ2α
κ4 − 1

4
+
ξαpα
f(ξα)

=
−1

2
ξ2α ≤ 0.

This is illustrated in the left panel of Figure 1. For fat tailed distribution, on
the contrary, this term can be positive and arbitrarily large. For thin tailed
distributions, the comparison can depend on the value of α. This is illustrated
in the right panel of Figure 1 for a standardized GED (ν) (Generalized Error
Distribution of parameter ν) of density f(x) ∝ exp{−0.5|x|1/ν}.
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We now deduce the asymptotic distributions of the two-step and the sym-
metric two-step estimators θ̂2Sn,α := H(θ̂n,−ξn,α) and θ̂S2Sn,α := H(θ̂n, ξ̃n,1−2α)
of θ0,α = H(θ0,−ξα).
Corollary 4.2. Under the assumptions of Theorem 4.2, the two-step esti-
mators of the VaR-parameter at level α satisfy

√
n
(
θ̂2Sn,α − θ0,α

)
L→ N (0,Υα),

√
n
(
θ̂S2Sn,α − θ0,α

)
L→ N (0, Υ̃α),

where

Υα =

[
∂H(θ, ξ)

∂(θ′, ξ)

]

(θ0,−ξα)

Σα

[
∂H(θ, ξ)

∂(θ′, ξ)′

]

(θ0,−ξα)

,

and Υ̃α is obtained by replacing Σα by Σ̃α in Υα.

It can be noted that, because the matrices Σ̃α and Σα only differ by their
lower-right term, with ξα > ξ̃α, we have, in the sense of positive definite
matrices,

Υ̃α � Υα.

Thus, the symmetric two-step estimator is asymptotically more accurate
than the two-step estimator. But the former estimator is inconsistent if the
errors distribution is not symmetric.

4.3. Comparing the one-step and two-step estimators in the

standard GARCH case

The results of Theorem 3.1 are now applied to the standard GARCH(p, q)
model {

ǫt = σtηt,
σ2t = ω0 +

∑q
i=1 α0iǫ

2
t−i +

∑p
j=1 β0jσ

2
t−j ,

(4.9)

where θ0 = (ω0, α01, . . . , β0p)
′ satisfies ω0 > 0, α0i ≥ 0, β0j ≥ 0. Let

θ0 =

(
θ
[1:q+1]
0

0p

)
, θ

[1:q+1]
0 = (ω0, α01, . . . , α0q)

′, A =

(
ξ2αIq+1 0

0 Ip

)
.

Corollary 4.3. Under the assumptions of Corollary 4.2, for the standard
GARCH model (4.9) the asymptotic variances of the two-step estimators of
the VaR parameter take the form

Υα =
κ4 − 1

4
A{J−1 − 4θ0θ

′
0}A+ 4ξ2α

α(1 − α)

f2(ξα)
θ0θ

′
0,

Υ̃α =
κ4 − 1

4
A{J−1 − 4θ0θ

′
0}A+ ξ2α

2α(1 − 2α)

f2(ξα)
θ0θ

′
0.
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To compare the asymptotic variances of the two estimators of θ0,α note
that

J−1
α = AJ−1A, fη∗(1) = −ξαf(ξα).

Hence

Varas{
√
n(θ̂n,α − θ0,α)} =

2α(1 − 2α)

4ξ2αf
2(ξα)

AJ−1A.

It follows that

Varas{
√
n(θ̂n,α − θ0,α)} −Υα = ∆αA

{
J−1

4
− θ0θ

′
0

}
A− 2α

ξ2αf
2(ξα)

Aθ0θ
′
0A

′,

Varas{
√
n(θ̂n,α − θ0,α)} − Υ̃α = ∆αA

{
J−1

4
− θ0θ

′
0

}
A,

where

∆α =
2α(1 − 2α)

ξ2αf
2(ξα)

− (κ4 − 1). (4.10)

The following result is a consequence of the fact that 4θ0θ
′
0 � J−1. It

allows to compare the asymptotic variances of the one-step estimator θ̂n,α
and two-step estimator θ̂S2Sn,α .

Corollary 4.4. Under the assumptions of Corollary 4.2, for the standard
GARCH model (4.9) with symmetric innovations, we have

Varas{
√
n(θ̂n,α − θ0,α)} � Varas

{√
n
(
θ̂S2Sn,α − θ0,α

)}
iff ∆α ≤ 0.

Interestingly, comparing the asymptotic variance matrices of the estima-
tors amounts to determining the sign of a real coefficient, which solely de-
pends on the distribution of ηt. None of the methods is superior in every
situation. If the fourth-order moment is large, a fortiori if it does not exist,
the one-step estimator will be better. Conversely, for distributions admitting
moments at any order (such as the Gaussian) the two-step estimator may
be superior. Figure 2 shows the surface ∆α ≤ 0, as a function of α and
ν, for Student distributions with ν degrees of freedom. It can be seen that
for small and moderate values of ν, the one-step estimator is asymptotically
more efficient than the two-step estimator for the values of α which are used
in practice. In Figure 3, ∆α is drawn as a function of ν, for GED(ν) and
α ∈ {0.01, 0.05}. The comparison is in favor of the one-step estimator for
ν < 0.15, and also for sufficiently large values of ν.
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Fig 2. Surface ∆α ≤ 0, with ∆α defined in (4.10), for which the one-step estimator
is asymptotically more efficient than the symmetric two-step estimator of θ0,α when
the distribution of ηt is a standardized Student with ν degrees of freedom, ν ∈ [4.9, 7]
and α ∈ [0.01, 0.35].
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Fig 3. ∆α, defined in (4.10), for α ∈ {0.01, 0.05}, when the distribution of ηt follows
a GED with ν degrees of freedom.
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5. Extensions

5.1. One-step estimation of the VaR parameter without the

symmetry assumption

We have seen that, under the assumption that the distribution of η∗0 is sym-
metric and under some regularity assumptions, the VaR parameter θ0,α de-
fined by (4.2) is consistently estimated by a QMLE, if and only if the instru-
mental density h is that defined by (3.6). This estimator has the form of the
quantile estimator θ̂n,α defined by (4.5) in the nonlinear regression model
(4.6), but may be inconsistent when the distribution of η∗0 is asymmetric.

It is however possible to define a one-step quantile estimator of the VaR
parameter without assuming that η∗0 is symmetric. To this aim, note that
similarly to (4.6) we have for ǫt < 0

log ǫ−t = log σ∗t + log η∗−t , P [log η∗−t < 0 | ǫt < 0] = τ0

where x− = max{0,−x} and τ0 = 1 − {α/P (η∗t < 0)}. This leads us to
consider the quantile estimator

θ̆n,α = argmin
θ∈Θ

∑

t :ǫt<0

ρτ̂

{
log

(
ǫ−t
σ̃t(θ)

)}
, τ̂ = 1−

(
1

n

n∑

t=1

1l{ǫt<0}

)−1

α.

It is known (see Lemma 2.3 in Berkes, Horváth and Kokoszka, 2003) that
any strictly stationarity GARCH model possesses a fractional moment of
order s ∈ (0, 1). It is then easy to check that for these models the following
assumption holds true.

A13: E supθ∈Θ |log σ1(θ)| <∞.

Theorem 5.1. Let (ǫt) be a strictly stationary and ergodic solution of (4.1),
where the distribution of η∗0 satisfies E log+ η∗−0 < ∞, and admits a density
in a neighborhood of -1. If A0, A2, A5 and A13 hold, then, for all α ∈
(0, P (η∗0 < 0)), we have

θ̆n,α → θ0,α, a.s.

where θ0,α is the VaR parameter satisfying (4.2).

The asymptotic distribution of this estimator is left for future research.

5.2. Two-step estimation of the ES parameter

Computing the ES involves two-steps, VaR computation in a first step fol-
lowed by the computation of a conditional expectation in a second step. For
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this reason, ES estimation is not amenable to the one-step QML estima-
tion method developed in Section 3. However, the two step approach can be
derived as follows.

Let µα = −E(η0 | η0 < ξα) denote the ES of the distribution of η0. By
(2.5) and A0, the theoretical ES is given by

ESt(α) = σ(ǫt−1, ǫt−2, . . . ; θ0)ESη(α) = σ(ǫt−1, ǫt−2, . . . ; θ
∗
0,α), (5.1)

where θ∗0,α = H(θ0, µα) is the ES parameter at level α.
An estimator of θ∗0,α is then given by

ẼSt(α) = σ̃t(θ̂n)µn,α = σ̃t{H(θ̂n, µn,α)}

where µn,α is the ES of the errors:

µn,α = −
∑n

t=1 η̂t1lη̂t<ξn,α∑n
t=1 1lη̂t<ξn,α

=
−1

[nα] + 1

n∑

t=1

η̂t1lη̂t<ξn,α ,

and H(θ̂n, µn,α) is an estimator of the ES parameter.

The next result gives the joint asymptotic distribution of (θ̂′n, µn,α), and

the asymptotic distribution of H(θ̂n, µn,α) in the standard GARCH case.

Theorem 5.2. Assume µα > 0, Eη2t = 1 and κ4 := Eη4t <∞. Let A1, A5,
A8 hold. Let A2, A6, A7 and A10 hold with δ = 2 and θ∗0 replaced by θ0.
Then
( √

n
(
θ̂n − θ0

)
√
n(µn,α − µα)

)
L→ N (0,Γα), Γα =

(
κ4−1
4 J−1 ϕαJ

−1Ω
ϕαΩ

′J−1 να

)
,

where J is as in Theorem 4.2 and

να = σ2α +
κ4 − 1

4
µ2α + µαxα, ϕα = −1

2
xα − µα

κ4 − 1

4
,

σ2α =
1

α2
var {(ηt − ξα)1lηt<ξα} , xα =

1

α
cov
{
1− η2t , (ηt − ξα)1lηt<ξα

}
.

It follows that the asymptotic distribution of the ES parameter is given by

√
n(H(θ̂n, µn,α)− θ∗0,α)

d→ N
(
0,

[
∂H(θ, µ)

∂(θ′, µ)

]

(θ0,µα)

Γα

[
∂H(θ, µ)

∂(θ′, µ)′

]

(θ0,µα)

)
.

For the standard GARCH model (4.9), we have

√
n(H(θ̂n, µn,α)− θ∗0,α)

d→ N (0,Υ∗
α) ,
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where

Υ∗
α =

κ4 − 1

4
A∗{J−1 − 4θ0θ

′
0}A∗ + 4µ2ασ

2
αθ0θ

′
0,

and A∗ is obtained by replacing ξα by µα in A.

The asymptotic distribution of the ES-parameter estimator thus depends
on the GARCH coefficients and simple characteristics of the innovations
distribution. In contrast with the VaR parameter, the asymptotic variance
does not involve the density of the errors distribution and thus can be more
straightforwardly estimated. In the asymptotic variance να of the errors ES
estimator, the term σ2α can be interpreted as the asymptotic variance of the
ES estimator if the ηt’s were observed (see Chen, 2008). The additional term,
κ4−1
4 µ2α+µαxα, thus reflects the effect of estimating the GARCH coefficients.

6. Numerical experiments

A Monte Carlo study was conducted in order to throw light on the perfor-
mance of the VaR-parameter estimators in finite sample. We also report an
empirical application to stock indices.

6.1. On simulated data

We begin by considering one of the simplest volatility model, the ARCH(1)
where ηt follows the Student distribution with ν degrees of freedom:

ǫt = σtηt, σ2t = ω0 + α0ǫ
2
t−1, ηt ∼ Stν . (6.1)

In this model, the VaR parameter is equal to θ0,α = (ω0,α, α0,α) where ω0,α =
ω0K

2
ν , α0,α = α0K

2
ν , and Kν denoted the α-quantile of the Stν . Simulating

N = 1, 000 independent trajectories of size n = 500 and n = 5, 000 of
this model, we compared the estimations of θ0,α obtained by the one-step

estimator θ̂n,α and the two-step estimator θ̂S2Sn,α . We considered the VaR
levels α = 0.01 and α = 0.05. The intercept was fixed to ω0 = 1 and we took
α0 = exp(−E log η21)/5, which guarantees strict stationarity of the model
for any value of ν (the necessary and sufficient strict stationarity condition
being E logα0η

2
1 < 0). Over the N simulations, and for both components

of θ0,α, the root mean squared error of estimation of the two methods are
respectively denoted by RMSE1 and RMSE2. We then defined the empirical
relative efficiency (ERE) of the one-step method with respect to the two-step
method by the ratio RMSE2/RMSE1. For instance, with an ERE of two the
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Table 2

ERE of the one-step method with respect to the two-step method for estimating the VaR
parameter for the ARCH(1) model with Student innovations (6.1). The number of

replication is N = 1, 000, the level of the VaR is α = 5% or α = 1% and the length of
each simulation is n = 500 or n = 5, 000.

n = 500 n = 5, 000
ν ν

1 2 3 4 5 6 ∞ 1 2 3 4 5 6 ∞
α = 5%
ω0,α 7.5 2.8 1.7 1.3 1 0.9 0.9 13.9 6.6 2.7 1.3 1.1 1 0.8
α0,α 7.3 3.6 1.7 1.3 1 1.0 0.8 22.2 8.7 3.2 1.3 1.1 1 0.9

α = 1%
ω0,α 6.1 1.6 1.0 0.8 0.7 0.7 0.7 41.1 3.6 1.6 0.9 0.8 0.8 0.7
α0,α 3.8 1.8 2.6 0.8 0.7 0.7 0.7 13.7 6.0 2.1 0.9 0.8 0.7 0.7

one-step method can be considered as twice more efficient than the two-
step method. Table 6.1 shows that, as expected from the asymptotic theory,
the estimator θ̂n,α is much more accurate than θ̂2Sn,α when the distribution

of ηt is heavy-tailed (i.e. ν is small) whereas θ̂2Sn,α is slightly more accurate

than θ̂n,α when the distribution of ηt is close to the normal (i.e. ν is large).
Similar conclusions were obtained for other distributions of the noise and for
more elaborate volatility models. In particular, we considered the Threshold
GARCH model introduced by Zakoïan (1994)

ǫt = σtηt, σt = ω0+α0+ǫ
+
t−1+α0−ǫ

−
t−1+β0σt−1, ηt ∼ GED(ν). (6.2)

The VaR parameter is now θ0,α = (ω0,α, α0+,α, α0−,α, β0) where ω0,α =
−ω0Kν , α0+,α = −α0+Kν , α0−,α = −α0−Kν , and Kν denotes the α-
quantile of the GED(ν). In our simulation experiments, we chose ω0 = 0.001,
β0 = 0.87, α0+ = α/4 and α0− = α where α is such that E log(α|ηt|+β0) = 0,
which ensures a strict stationary solution to (6.2). The results presented in
Table 3 are in accordance with Figure 3. The one-step estimator of the VaR
parameter is more accurate then the two-step estimator when ν ≤ 0.1 or
when ν is large (depending on the value of α). In the Gaussian case (ν = 0.5),
the two-step method should be preferred.

6.2. On real data

We considered nine major world stock indices covering the period from Jan-
uary, 2 1991 to August, 26 2011 : CAC (Paris), DAX (Frankfurt), FTSE
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Table 3

ERE of the one-step method with respect to the two-step method for estimating the VaR
parameter for the TGARCH(1,1) with GED(ν) innovations (6.2). The number of

replication is N = 1, 000, the level of the VaR is α = 5% or α = 1% and the length of
each simulation is n = 500 or n = 1, 000.

n = 500 n = 1, 000
ν ν

0.01 0.1 0.5 1 2 3 0.01 0.1 0.5 1 2 3
α = 5%
ω0,α 1.5 1.2 0.8 2.0 4.7 2.3 1.3 1.2 0.8 2.0 6.3 2.4
α0+,α 1.3 1.1 0.9 0.9 2.5 2.2 1.5 1.2 0.8 0.9 2.0 2.7
α0−,α 1.4 1.1 0.8 1.0 2.2 2.1 1.4 1.2 0.9 0.9 1.5 2.7
β0 1.5 1.1 0.9 1.6 4.0 1.9 1.4 1.2 0.8 1.6 4.6 2.4

α = 1%
ω0,α 2.1 1.2 0.6 0.7 3.0 4.7 2.2 1.3 0.6 0.6 4.2 4.2
α0+,α 2.6 1.3 0.8 0.7 1.5 1.7 3.2 1.3 0.6 0.7 1.2 1.8
α0−,α 2.6 1.3 0.8 0.8 1.3 1.6 2.7 1.2 0.7 0.7 1.0 2.2
β0 2.2 1.2 0.7 0.7 2.4 2.3 2.7 1.3 0.7 0.7 3.0 2.8

(London), Nikkei (Tokyo), NSE (Bombay), SMI (Switzerland), SP500 (New
York), SPTSX (Toronto), and SSE (Shanghai). For each series of log-returns,
ǫt = log(pt/pt−1) where pt denotes the value of the index, we estimated the
VaR parameter θ0,α of GARCH(1,1) models, for α = 5% and 1%. We report
in Table 4 our estimates of θ0,α obtained by the one-step and the symmet-
ric two-step methods, along with standard deviations. We also report two
estimates of ∆α based on residuals η̂t or η̂∗t of the two-step or the one-step
method. Such estimates are negative for 7 out of 9 indices indicating, by
Corollary 4.4, a superiority in accuracy of the one-step method for the risk
level 5%. The conclusions are quite different when more extreme risks are
considered. Table 5 shows that, for α = 1%, the two-step method is probably
more efficient than the one-step method for large n (except perhaps for the
SMI).

Table 6 reports estimation results for the ES parameter. While the esti-
mated VaR parameters over the nine stocks were very similar, large differ-
ences between stocks appear when risk is measured by the ES. In particular,
the Nikkei, NSE and SMI display much larger estimated ARCH coefficients
α0,5% and α0,1%.

Figure 4 displays the returns, estimated -VaR (at the 5% and 1% levels)
and VaR accuracy intervals for the SP index from April, 6, 2011 to August,
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Table 4

One-step estimator θ̂n,α and two-step estimator θ̂S2S
n,α for the VaR parameter θ0,α at level

α = 5% of GARCH(1,1) models for 9 stock market indices. The estimated standard
deviations are given into brackets. The last two columns displays estimations of ∆α (θ̂n,α

should be asymptotically more efficient than θ̂S2S
n,α if and only if ∆α < 0) based on

residuals of the two-step and one-step methods.

Index Estimator ω0,5% α0,5% β0,5% ∆̂S2S
5% ∆̂5%

CAC θ̂S2S
n,5% 0.08 (0.02) 0.23 (0.03) 0.90 (0.01) -0.43 -0.70

θ̂n,5% 0.05 (0.01) 0.23 (0.03) 0.90 (0.01)

DAX θ̂S2S
n,5% 0.09 (0.03) 0.22 (0.04) 0.90 (0.02) -4.68 -6.84

θ̂n,5% 0.04 (0.01) 0.22 (0.02) 0.91 (0.01)

FTSE θ̂S2S
n,5% 0.04 (0.01) 0.25 (0.02) 0.89 (0.01) 0.29 0.15

θ̂n,5% 0.03 (0.01) 0.25 (0.02) 0.90 (0.01)

Nikkei θ̂S2S
n,5% 0.08 (0.02) 0.33 (0.05) 0.87 (0.02) -3.86 -4.54

θ̂n,5% 0.04 (0.01) 0.30 (0.03) 0.88 (0.01)

NSE θ̂S2S
n,5% 0.16 (0.06) 0.26 (0.06) 0.87 (0.03) -3.11 -3.30

θ̂n,5% 0.18 (0.05) 0.31 (0.05) 0.85 (0.02)

SMI θ̂S2S
n,5% 0.12 (0.03) 0.31 (0.05) 0.84 (0.03) -3.05 -5.00

θ̂n,5% 0.07 (0.02) 0.30 (0.04) 0.87 (0.02)

SP500 θ̂S2S
n,5% 0.02 (0.00) 0.20 (0.02) 0.92 (0.01) -2.10 -2.31

θ̂n,5% 0.02 (0.00) 0.19 (0.01) 0.92 (0.01)

SPTSX θ̂S2S
n,5% 0.02 (0.01) 0.17 (0.03) 0.93 (0.01) -0.06 -0.52

θ̂n,5% 0.04 (0.01) 0.23 (0.03) 0.90 (0.01)

SSE θ̂S2S
n,5% 0.07 (0.03) 0.17 (0.03) 0.93 (0.01) 0.58 0.07

θ̂n,5% 0.12 (0.04) 0.19 (0.04) 0.91 (0.02)

26, 2011. The (1−α0)% confidence intervals (for α0 = 5%) are obtained from
formula (4.7). We preferred to report the opposite of the VaR, because the
aim of such risk measures is to determine the capital reserve which acts as a
protection against big losses (i.e. large negative values of ǫt). Obviously the
estimated VaR’s increase in module during the recent hectic period, while
the confidence intervals are generally larger in such periods. In terms of risks,
this can be interpreted as follows: unsurprisingly, the market risk increases in
turbulent periods; but the estimation risk also increases and the magnitude of
the confidence intervals allow to quantify the level of estimation risk. Similar
conclusions can be drawn from Figure 5, displaying accuracy intervals for
the opposite of the ES.
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Table 5

As Table 4 but for the risk level α = 0.01

Index Estimator ω0,1% α0,1% β0,1% ∆̂S2S
1% ∆̂1%

CAC θ̂S2S
n,1% 0.18 (0.04) 0.52 (0.07) 0.90 (0.01) 3.29 3.31

θ̂n,1% 0.17 (0.06) 0.54 (0.09) 0.89 (0.02)

DAX θ̂S2S
n,1% 0.19 (0.06) 0.48 (0.09) 0.90 (0.02) 2.38 0.61

θ̂n,1% 0.23 (0.07) 0.68 (0.13) 0.87 (0.02)

FTSE θ̂S2S
n,1% 0.09 (0.02) 0.53 (0.05) 0.89 (0.01) 5.22 4.63

θ̂n,1% 0.08 (0.03) 0.58 (0.08) 0.89 (0.02)

Nikkei θ̂S2S
n,1% 0.17 (0.05) 0.76 (0.11) 0.87 (0.02) 2.07 1.20

θ̂n,1% 0.24 (0.06) 0.88 (0.12) 0.84 (0.02)

NSE θ̂S2S
n,1% 0.42 (0.15) 0.69 (0.16) 0.87 (0.03) 11.84 11.0

θ̂n,1% 0.36 (0.23) 0.70 (0.26) 0.87 (0.04)

SMI θ̂S2S
n,1% 0.27 (0.07) 0.72 (0.12) 0.84 (0.03) 0.31 -0.93

θ̂n,1% 0.24 (0.06) 0.80 (0.13) 0.83 (0.02)

SP500 θ̂S2S
n,1% 0.04 (0.01) 0.47 (0.04) 0.92 (0.01) 1.17 0.51

θ̂n,1% 0.04 (0.01) 0.44 (0.04) 0.92 (0.01)

SPTSX θ̂S2S
n,1% 0.05 (0.02) 0.42 (0.07) 0.93 (0.01) 2.92 3.18

θ̂n,1% 0.03 (0.02) 0.42 (0.09) 0.93 (0.01)

SSE θ̂S2S
n,1% 0.18 (0.07) 0.43 (0.08) 0.93 (0.01) 9.33 6.47

θ̂n,1% 0.30 (0.15) 0.60 (0.16) 0.90 (0.02)

Table 6

Estimation of the ES parameter of GARCH(1,1) models at level α = 5% and α = 1% for
9 stock market indices. The estimated standard deviations are given into brackets.

Index ω∗
0,5% α∗

0,5% β∗
0,5% ω∗

0,1% α∗
0,1% β∗

0,1%

CAC 0.16 (0.04) 0.44 (0.06) 0.90 (0.01) 0.31 (0.08) 0.87 (0.14) 0.90 (0.01)
DAX 0.17 (0.05) 0.43 (0.08) 0.90 (0.02) 0.35 (0.12) 0.90 (0.21) 0.90 (0.02)
FTSE 0.08 (0.02) 0.47 (0.05) 0.89 (0.01) 0.17 (0.03) 0.93 (0.11) 0.89 (0.01)
Nikkei 0.15 (0.04) 0.68 (0.10) 0.87 (0.02) 0.34 (0.10) 1.50 (0.27) 0.87 (0.02)
NSE 0.36 (0.13) 0.59 (0.14) 0.87 (0.03) 0.91 (0.36) 1.50 (0.41) 0.87 (0.03)
SMI 0.25 (0.06) 0.65 (0.11) 0.84 (0.03) 0.52 (0.15) 1.37 (0.29) 0.84 (0.03)
SP500 0.04 (0.01) 0.40 (0.04) 0.92 (0.01) 0.08 (0.02) 0.91 (0.10) 0.92 (0.01)
SPTSX 0.05 (0.02) 0.37 (0.06) 0.93 (0.01) 0.10 (0.04) 0.81 (0.16) 0.93 (0.01)
SSE 0.15 (0.06) 0.36 (0.07) 0.93 (0.01) 0.33 (0.12) 0.79 (0.16) 0.93 (0.01)
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Fig 4. Returns, estimated -VaR (at the 5% and 1% levels) and VaR accuracy in-
tervals for the SP index from April, 6, 2011 to August, 26, 2011. Estimation of the
VaR parameter is based on the 500 previous values.

7. Conclusion

This paper presented two methods for estimating the risk parameter in con-
ditionally heteroskedastic models. Asymptotic results were established for
general risk measure, and a particular attention was devoted to the VaR and
the ES.

The introduction of a VaR parameter facilitates the asymptotic compari-
son of the risk evaluation procedures. In particular, for the standard GARCH
models the ranking of the two methods, in terms of asymptotic relative effi-
ciency, only depends on the sign of the scalar ∆α defined by (4.10), involving
the risk level α and characteristics of the innovations distribution. Estima-
tion of the ES parameter can be achieved by the two-step method, and it
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Fig 5. Returns, estimated ES (at the 5% and 1% levels) and ES accuracy intervals
for the SP index from April, 6, 2011 to August, 26, 2011. Estimation of the ES
parameter is based on the 500 previous values.

turns out that the asymptotic distribution of the estimator depends on the
GARCH coefficients and other simple characteristics of the innovations dis-
tribution.

Finally, the estimation risk, namely the effect of the inaccuracy of the
parameter estimation on the risk evaluation, can be explicitly taken into
account, leading to confidence bounds for the VaR and the ES.

A natural extension of this work would consider heteroskedastic models
including a conditional mean. For instance, Ling (2004) introduced a class
of double-autoregressive models and studied the properties of the QMLE.
In addition, the concept of risk parameter, as well as the proposed estima-
tion procedures, undoubtedly can be generalized to multivariate conditional
volatility models. These extensions are left for future research.
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Appendix A: Technical assumptions and proofs

A.1. Technical assumptions

A6: θ∗0 belongs to the interior of Θ.

A7: There exist no non-zero x ∈ R
m such that x′ ∂σt(θ

∗
0 )

∂θ
= 0, a.s.

A8: The function θ 7→ σ(x1, x2, . . . ; θ) has continuous second-order derivatives, and

sup
θ∈Θ

∥

∥

∥

∥

∂σt(θ)

∂θ
− ∂σ̃t(θ)

∂θ

∥

∥

∥

∥

+

∥

∥

∥

∥

∂2σt(θ)

∂θ∂θ′
− ∂2σ̃t(θ)

∂θ∂θ′

∥

∥

∥

∥

≤ C1ρ
t,

where C1 and ρ are as in A5.

A9: h is twice differentiable with |u2 (h′(u)/h(u))
′ | ≤ C0(1 + |u|δ) for all u ∈ R.

A10: There exists a neighborhood V (θ∗0) of θ∗0 such that the following variables have
finite expectation:

sup
θ∈V (θ∗0 )

∥

∥

∥

∥

1

σt(θ)

∂σt(θ)

∂θ

∥

∥

∥

∥

4

, sup
θ∈V (θ∗0 )

∥

∥

∥

∥

1

σt(θ)

∂2σt(θ)

∂θ∂θ′

∥

∥

∥

∥

2

, sup
θ∈V (θ∗0 )

∣

∣

∣

∣

σt(θ
∗
0)

σt(θ)

∣

∣

∣

∣

2δ

.

A.2. Proofs for the results of Section 3

We start by a lemma. For x/σ ∈ Ac, let

g1(x, σ) =
∂g(x,σ)

∂σ
= − 1

σ
− h′(x/σ)

h(x/σ)

x

σ2
.

Lemma A.1. Under Assumption A4, for σ, σ̃ > ω > 0 we have, for σ⋆ between σ and σ̃
such that x/σ⋆ ∈ Ac,

|g(x, σ)− g(x, σ̃)| ≤







|g1(x, σ⋆)||σ − σ̃| if x 6= 0,

1
ω
|σ − σ̃| if x = 0.

Proof. It is not restrictive to assume σ > σ̃. For x 6= 0, write A ∩ (x/σ, x/σ̃) =
{x/σ1, . . . , x/σj} when this set is non empty. By convention, j = 0 when this set is
empty. Assume

σ = σ0 > σ1 > . . . > σj+1 = σ̃.

By applying Rolle’s theorem on the sets (x/σi, x/σi+1) we get, for σ⋆
i ∈ (σi, σi+1),

|g(x, σ)− g(x, σ̃)| =
∣

∣

∣

∣

∣

j
∑

i=0

g1(x, σ
⋆
i )(σi+1 − σi)

∣

∣

∣

∣

∣

≤ sup
i

|g1(x, σ⋆
i )|(σ − σ̃).

We also have |g(0, σ)− g(0, σ̃)| = log σ − log σ̃ and the conclusion follows. �

Proof of Theorem 3.1. The consistency is a consequence of the following intermediate
results (see e.g. the proofs of Theorem 7.1 in Francq and Zakoian, 2010):

i) lim
n→∞

sup
θ∈Θ

|Qn(θ)− Q̃n(θ)| = 0 , a.s.

ii) E|g(ǫt, σt(θ
∗
0))| <∞ and if θ 6= θ∗0 , Eg(ǫt, σt(θ)) < Eg(ǫt, σt(θ

∗
0)) ,

iii) any θ 6= θ∗0 has a neighborhood V (θ) such that

lim sup
n→∞

sup
θ∗∈V (θ)

Q̃n(θ
∗) < lim

n→∞
Q̃n(θ

∗
0) , a.s.
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where

Qn(θ) =
1

n

n
∑

t=1

g(ǫt, σt(θ)).

Let K be a generic positive constant, allowed to be a random variable, measurable with
respect to {ǫu, u ≤ 0}, whose values will be modified along the proofs.

We begin by showing i). Using a Taylor expansion, almost surely

sup
θ∈Θ

|Qn(θ)− Q̃n(θ)|

≤ n−1
n
∑

t=1

sup
θ∈Θ

|g1(ǫt, σ⋆
t (θ))||σ̃t(θ)− σt(θ)|1{ǫt 6=0}

+n−1
n
∑

t=1

sup
θ∈Θ

1

ω
|σ̃t(θ)− σt(θ)|1{ǫt=0}

≤ n−1K
n
∑

t=1

ρt sup
θ∈Θ

∣

∣

∣

∣

1

σ⋆
t

ǫt
σ⋆
t

h′

h

(

ǫt
σ⋆
t

)∣

∣

∣

∣

1{ǫt 6=0} +
K

ω
n−1

n
∑

t=1

ρt

≤ Kn−1
n
∑

t=1

ρt(1 + |ǫt|δ),

where g1 is defined in Theorem 3.2 and σ⋆
t (θ) is between σ̃t(θ) and σt(θ). The first in-

equality is a consequence of Lemma A.1. The last two inequalities rest on Assumptions
A2, A4 and A5. By the Markov inequality and A4, we deduce

∞
∑

t=1

P(ρt|ǫt|δ > ε) ≤
∞
∑

t=1

ρts/δE|ǫt|s
ε

s
δ

<∞

and thus ρt|ǫt|δ → 0 a.s by the Borel-Cantelli lemma. Thus, i) follows by the Cesàro
lemma.

Condition ii) is a consequence of A2-A3. Indeed,

E{g(ǫt, σt(θ))− g(ǫt, σt(θ
∗
0))} = E

{

g

(

η∗t ,
σt(θ)

σt(θ∗0)

)

− g(η∗t , 1)

}

≤ 0,

with equality iff θ = θ∗0 .
The proof of iii) is omitted because it uses more standard arguments. �

Proof of Proposition 3.1. First assume that h satisfies (3.4). By Assumptions A4 and
A2, the function σ 7→ ∂ log h (η∗0/σ)∂σ is bounded by an integrable random variable,
uniformly in a neighborhood of any σ > 0. By the dominated convergence theorem, we
thus have

∂

∂σ
Eg(η∗0 , σ) =

−1

σ
− 1

σ
E

{

λψ

(

η∗0
σ

)

− 1

}

,

which is equal to zero if and only if r(η∗0/σ) = 1. By r(η∗0) = 1 and by the positive
homogeneity of r, r(η∗0/σ) = 1 is equivalent to σ = 1. Thus, for h satisfying (3.4), A3 is
a consequence of (3.3).

To prove the "only if" part, note that

A3 ⇒ E

(

h′(η∗0)

h(η∗0)
η∗0

)

= −1. (A.1)
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Note also that ψ cannot be null on R because this would imply r(X) = 1 for any variable
X, by (3.3), in contradiction with the positive homogeneity of r. Now if (3.4) does not
hold, then for some x1, x2 with ψ(x1) 6= 0, and λ1 6= λ2

h′(xi)

h(xi)
xi + 1 = λiψ(xi), i = 1, 2.

Let η such that P (η = xi) = pi > 0 with p1 + p2 = 1, and ψ(x1)p1 + ψ(x2)p2 = 0. Then
Eψ(η) = 0 and

E

(

h′(η)

h(η)
η

)

+ 1 = λ1ψ(x1)p1 + λ2ψ(x2)p2 = (λ1 − λ2)ψ(x1)p1 6= 0.

Then, in view of (A.1), Assumption A3 is not satisfied. We have found a distribution of
η∗0 such that r(η∗0) = 1 but A3 is not satisfied. The proposition follows. �

Proof of Theorem 3.2. The proof is based on a Taylor expansion of the criterion Q̃n at
θ∗0 . Since θ̂∗n converges to θ∗0 , which stands in the interior of the parameter space by A6,
for n large enough the derivative of the criterion is equal to zero at θ̂∗n. We thus have

0 =
√
n

n
∑

t=1

∂

∂θ
g(ǫt, σ̃t(θ

∗
0)) +

(

1

n

n
∑

t=1

∂2

∂θi∂θj
g(ǫt, σ̃t(θ

∗
ij))

)

√
n
(

θ̂∗n − θ∗0

)

where the θ∗ij ’s are between θ̂∗n and θ∗0 . The asymptotic normality is proven by means of
the following intermediate results: for some neighboorhood V (θ∗0) of θ∗0 ,

iv) lim
n→∞

√
n sup

θ∈V (θ∗0 )

∥

∥

∥

∥

∂

∂θ
Qn(θ)− ∂

∂θ
Q̃n(θ)

∥

∥

∥

∥

= 0 , in probability,

v)
∂2

∂θ∂θ′
Qn(θ

∗) → Eg2(η
∗
0 , 1)

4
I , in probability,

vi)
√
n
∂

∂θ
Qn(θ

∗
0)

L→ N
(

0,
Eg21(η

∗
0 , 1)

4
I

)

,

vii) I is nonsingular,

for any θ∗ between θ̂∗n and θ∗0 . For brevity, we will skip the proof of v)-vii) which is available
from the authors. To prove iv) we note that

sup
θ∈V (θ∗0 )

√
n

∥

∥

∥

∥

∂

∂θ
Qn(θ)− ∂

∂θ
Q̃n(θ)

∥

∥

∥

∥

≤ sup
θ∈V (θ∗0 )

1√
n

n
∑

t=1

|g1(ǫt, σt(θ))− g1(ǫt, σ̃t(θ))|
∥

∥

∥

∥

∂σt(θ)

∂θ

∥

∥

∥

∥

+ sup
θ∈V (θ∗0 )

1√
n

n
∑

t=1

|g1(ǫt, σ̃t(θ))|
∥

∥

∥

∥

∂σt(θ)

∂θ
− ∂σ̃t(θ)

∂θ

∥

∥

∥

∥

. (A.2)

Note that |g1(ǫt, σ̃t(θ))| ≤ K(1 + |ǫt|δ) by A4 and the first part of A2. Thus, using A8,
the last term in (A.2) is bounded by

K√
n

n
∑

t=1

ρt(1 + |ǫt|δ),
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It is not restrictive to assume s < δ in A4. We have, by the cr-inequality,

E

( ∞
∑

t=1

ρt(1 + |ǫt|δ)
)s/δ

≤
∞
∑

t=1

ρst/δ(1 + |ǫt|s) <∞.

It follows that

K√
n

n
∑

t=1

ρt(1 + |ǫt|δ) ≤ K√
n

∞
∑

t=1

ρt(1 + |ǫt|δ) → 0, a.s.

Thus the second term in the right-hand side of (A.2) goes to 0 a.s.
The first term in (A.2) is bounded by

sup
θ∈V (θ∗0 )

1√
n

n
∑

t=1

|g2(ǫt, σ∗
t (θ))|Kρt

∥

∥

∥

∥

∂σt(θ)

∂θ

∥

∥

∥

∥

(A.3)

where g2(x, σ) = ∂g1(x, σ)/∂σ and σ∗
t (θ) is between σ̃t(θ) and σt(θ). Noting that

g2(x, σ) =
1

σ2

[

1 +
x

σ

{

2
h′

h
+
x

σ

(

h′

h

)′}
(x

σ

)

]

,

we have

|g2(ǫt, σ∗
t (θ))| ≤

K

σ∗
t (θ)

(

1 + |ǫt|δ
)

by A4, A9 and the first part of A2. The term in (A.3) is thus bounded by

K√
n

n
∑

t=1

ρt(1 + |ǫt|δ) sup
θ∈V (θ∗0 )

∥

∥

∥

∥

1

σt(θ)

∂σt(θ)

∂θ

∥

∥

∥

∥

.

By the Cauchy-Schwarz inequality and A10 we have, for s < 2δ,

E

( ∞
∑

t=1

ρt(1 + |ǫt|δ) sup
θ∈V (θ∗0 )

∥

∥

∥

∥

1

σt(θ)

∂σt(θ)

∂θ

∥

∥

∥

∥

)s/2δ

≤





∞
∑

t=1

ρst/2δ{E(1 + 2|ǫt|s/2 + |ǫt|s)}1/2
{

E sup
θ∈V (θ∗0 )

∥

∥

∥

∥

1

σt(θ)

∂σt(θ)

∂θ

∥

∥

∥

∥

s/δ
}1/2



 <∞.

We can conclude that the first term in the right-hand side of (A.2) goes to 0 a.s., which
completes the proof of iv). �

A.3. Proofs for the results of Section 4

Proof of Corollary 4.1. The distribution of η∗t being symmetric, first note that Model
(4.1) is in the form (2.4) with r(η∗t ) = F−1

η∗ (1 − α). Thus A1 is satisfied. Now note that

θ̂n,α = θ̂∗n, where θ̂∗n is defined by (3.1)-(3.2) with, up to an additive constant, g(ǫt, σ̃t(θ))
equal to

(2λα− 1) log |ǫt| − λ1{|ǫt|>σ̃t(θ)} log |ǫt| − λ(2α− 1{|ǫt|>σ̃t(θ)}) log σ̃t(θ).
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Assumption A4 being satisfied with A = {−1, 0, 1} and δ = 0, it remains to show that
A3 holds true and the conclusion will follow from Theorem 3.1.

Note that E|g(η∗0 , 1)| < ∞ under the moment condition on log |η∗0 |. Moreover, for any
σ > 0, σ 6= 1, the distribution of η∗0 being symmetric,

Eg(η∗0 , σ)− Eg(η∗0 , 1) = −λE(log |η∗0 | − log σ)(1{|η∗
0 |>σ} − 1{|η∗

0 |>1}) ≤ 0.

Note that the inequality is strict because η∗0 admits a density in a neighborhood of 1,
which completes the proof. �

Proof of Theorem 4.1. First note that ν̂n :=
√
n(θ̂n,α − θ0,α) is such that

ν̂n = arg min
ν∈Λn

S̃n(ν),

where Λn :=
√
n(Θ− θ0,α) and

S̃n(ν) =
n
∑

t=1

ρ1−2α

{

log

( |ǫt|
σ̃t(θ0,α + n−1/2ν)

)}

− ρ1−2α

{

log

( |ǫt|
σ̃t(θ0,α)

)}

.

Showing that the initial values are asymptotically negligible, and linearizing log σt(θ0,α +
n−1/2ν) around ν = 0, Lemma A.2 below demonstrates that S̃n(ν) can be approximated
by

Sn(ν) =
n
∑

t=1

ρ1−2α

{

log |η∗t | −
ν′√
n
Dt(θ0,α)

}

− ρ1−2α (log |η∗t |) .

Let flog |η∗| denote the density of the variable log |η∗t |. Using a convexity argument,
Lemma A.3 then shows that Sn(ν) weakly converges to the process

S(ν) =
√

2α(1− 2α)ν′N + flog |η∗|(0)ν
′Jαν/2, N ∼ N (0, Jα).

The process is minimized at

ν̂ = −
√

2α(1− 2α)

flog |η∗|(0)
J−1
α N ∼ N

(

0,
2α(1− 2α)

f2
log |η∗|(0)

J−1
α

)

The conclusion follows from Remark 1 and Lemma 2.2 in Davis, Knight and Liu (1992).�

Lemma A.2. Let CK = {ν ∈ R
m : ‖ν‖ ≤ K}. Under the assumptions of Theorem 4.1,

for all K > 0, we have
sup
ν∈CK

|Sn(ν)− S̃n(ν)| = oP (1).

Proof: Let Ḋt(θ) =
∂
∂θ
D′

t(θ), and let D̃t(θ) (resp. ˙̃Dt(θ)) be obtained by replacing σt(θ)

by σ̃t(θ) in Dt(θ) (resp. Ḋt(θ)). A Taylor expansion yields

log σ̃t

(

θ0,α +
ν√
n

)

= log σ̃t(θ0,α) +

1
∑

i=0

ṽ
(i)
t,n(ν),

with

ṽ
(0)
t,n(ν) =

1√
n
ν′D̃t(θ0,α), ṽ

(1)
t,n(ν) =

1

2n
ν′ ˙̃Dt(θ̃

∗
t )ν,
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where θ̃∗t is between θ0,α and θ0,α + n−1/2ν. Let η̃t = ǫt/σ̃t(θ0,α). Using the identity

ρ1−2α(u− v)− ρ1−2α(u)

= −v(1− 2α− 1{u<0}) + (u− v)
{

1{0>u>v} − 1{0<u<v}
}

= −v(1− 2α− 1{u<0}) +

∫ v

0

{

1{u≤s} − 1{u<0}
}

ds (A.4)

for u 6= 0 (see Equation (A.3) in Koenker and Xiao, 2006), we obtain

S̃n(ν) =

1
∑

i=0

T̃ (i)
n (ν) + Ũ (i)

n (ν),

with

T̃ (i)
n (ν) = −

n
∑

t=1

ṽ
(i)
t,n(ν)(1− 2α− 1{|η̃t|<1}),

and

Ũ (0)
n (ν) =

n
∑

t=1

ξ̃
(0)
t,n(ν), ξ̃

(0)
t,n(ν) =

∫ ṽ
(0)
t,n(ν)

0

{

1{log |η̃t|≤s} − 1{log |η̃t|<0}
}

ds,

Ũ (1)
n (ν) =

n
∑

t=1

ξ̃
(1)
t,n(ν), ξ̃

(1)
t,n(ν) =

∫

∑1
i=0 ṽ

(i)
t,n(ν)

ṽ
(0)
t,n(ν)

{

1{log |η̃t|≤s} − 1{log |η̃t|<0}
}

ds.

Define T
(i)
n (ν) by replacing σ̃t(·) by σt(·) in T̃

(i)
n (ν). Define U

(i)
n (ν), ξ

(i)
t,n(ν) and v

(i)
t,n(ν)

similarly. Noting that T
(1)
n (ν) is centered and has a variance of order O(1/n) uniformly in

ν, in view of A10, we obtain supν∈CK
|T (1)

n (ν)| = oP (1). Now we have

∣

∣

∣
T̃ (1)
n (ν)− T (1)

n (ν)
∣

∣

∣
≤ 1

2n

n
∑

t=1

∣

∣

∣
ν′ ˙̃Dt(θ̃

∗
t )ν
∣

∣

∣

∣

∣

∣
1
∗
{|ǫt|∈(σt(θ0,α),σ̃t(θ0,α))}

∣

∣

∣

+
1

2n

n
∑

t=1

∣

∣

∣
ν′
{

˙̃Dt(θ̃
∗
t )− Ḋt(θ̃

∗
t )
}

ν
∣

∣

∣

with 1
∗
{X∈(a,b)} = 1{X<b}−1{X<a} for any real numbers a, b and any real random variable

X. The second term of the right-hand side of the previous inequality is bounded by
K
∑n

t=1 ρ
t/n = o(1) by A2, A5 and A8. Using the Hölder inequality, A10, and

E
∣

∣

∣1
∗
{|ǫt|∈(σt(θ0,α),σ̃t(θ0,α))}

∣

∣

∣ ≤ P

{

|η∗t | ∈
(

1,
σt(θ0,α)

σ̃t(θ0,α)

)}

≤ Kρt (A.5)

the first term also tends to zero. Thus supν∈CK
|T̃ (1)

n (ν)| = oP (1). Furthermore

∣

∣

∣T̃
(0)
n (ν)− T (0)

n (ν)
∣

∣

∣ ≤ 1√
n

n
∑

t=1

∣

∣

∣ν
′D̃t(θ0,α)

∣

∣

∣

∣

∣

∣1
∗
{|ǫt|∈(σt(θ0,α),σ̃t(θ0,α))}

∣

∣

∣

+
1√
n

n
∑

t=1

∣

∣

∣ν
′
{

D̃t(θ0,α)−Dt(θ0,α)
}∣

∣

∣

is also of order oP (1) uniformly in ν, by the Markov inequality and already used arguments.
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Now, using the elementary relation

∫ ã

0

f̃(x)dx−
∫ a

0

f(x)dx =

∫ ã

a

f̃(x)dx+

∫ a

0

{

f̃(x)− f(x)
}

dx

with standard notations, we have

|ξ̃(0)t,n(ν)− ξ
(0)
t,n(ν)| =

∣

∣

∣

∣

∣

∫ ṽ
(0)
t,n(ν)

v
(0)
t,n(ν)

{

1{log |η̃t|≤s} − 1{log |η̃t|<0}
}

ds

+

∫ v
(0)
t,n(ν)

0

{

1
∗
{|η∗

t |∈
(

es,es
σ̃t(θ0,α)

σt(θ0,α)

)

}
− 1

∗
{|η∗

t |∈
(

1,
σ̃t(θ0,α)

σt(θ0,α)

)

}

}

ds

∣

∣

∣

∣

∣

.

Using the inequalities
√
n|v(0)t,n(ν)− ṽ

(0)
t,n(ν)| ≤ Kρt and (A.5), splitting the latter integral

into two parts, and taking conditional expectation, we then obtain

Et−1|ξ̃(0)t,n(ν)− ξ
(0)
t,n(ν)| ≤ Kρt√

n
+

∫ 1

n1/4

0

Kρtds+ 2|v(0)t,n(ν)|1{|v(0)
t,n(ν)|≥n−1/4}

where Et−1 denotes the expectation conditional on {ηu : u < t}. Using in particular

E|v(0)t,n(ν)|1{|v(0)
t,n(ν)|≥n−1/4} ≤

∥

∥ν′Dt(θ0,α)/
√
n
∥

∥

4

{

P (|ν′Dt(θ0,α)| ≥ n1/4)
}3/4

≤ K/n11/16 ,

the Markov inequality shows that supν∈CK
|Ũ (0)

n (ν)−U
(0)
n (ν)| = oP (1). Similarly, one can

show that supν∈CK
|Ũ (1)

n (ν)− U
(1)
n (ν)| = oP (1).

Now note that

∣

∣

∣
Et−1ξ

(1)
t,n(ν)

∣

∣

∣
≤

∣

∣

∣

∣

∣

∫

∑1
i=0 v

(i)
t,n(ν)

v
(0)
t,n(ν)

∫ s

0

flog |η∗|(s)ds

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

∫

∑1
i=0 v

(i)
t,n(ν)

v
(0)
t,n(ν)

smax
[0,s]

|flog |η∗|(x)|ds.
∣

∣

∣

∣

∣

By A11 and arguments already given, the expectation of the previous variable is of order
OP (n

−3/2). It follows that supν∈CK
|U (1)

n (ν)| = oP (1).
We have thus shown that

sup
ν∈CK

|S̃n(ν)− T (0)
n (ν)− U (0)

n (ν)| = oP (1).

The conclusion follows by noting that, in view of (A.4), Sn(ν) = T
(0)
n (ν) + U

(0)
n (ν). �

Lemma A.3. Under the assumptions of Theorem 4.1 we have

Sn(·) d→ S(·)

on the space C(Rm) of the continuous functions on R
m where convergence means uniform

convergence on every compact set.
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Proof: We have shown in Lemma A.2 that (A.4) entails

Sn(ν) = Tn(ν) + Un(ν),

with

Tn(ν) = − ν′√
n

n
∑

t=1

Dt(θ0,α)(1− 2α− 1{|η∗
t |<1})

and

Un(ν) =

n
∑

t=1

ξt,n(ν),

ξt,n(ν) =

(

log |η∗t | −
ν′√
n
Dt(θ0,α)

)

×
(

1{ ν′
√

n
Dt(θ0,α)<log |η∗

t |<0} − 1{ ν′
√

n
Dt(θ0,α)>log |η∗

t |>0}

)

.

We have

Et−1

(

log |η∗t | −
ν′√
n
Dt(θ0,α)

)

1{ ν′
√

n
Dt(θ0,α)>log |η∗

t |>0}

= 1{ ν′
√

n
Dt(θ0,α)>0}

∫ ν′
√

n
Dt(θ0,α)

0

(

x− ν′√
n
Dt(θ0,α)

)

flog |η∗|(x)dx

= flog |η∗|(0)1{ ν′
√

n
Dt(θ0,α)>0}

∫ ν′
√

n
Dt(θ0,α)

0

(

x− ν′√
n
Dt(θ0,α)

)

dx+Rn,t

=
−1

2n
flog |η∗|(0)1{ ν′

√
n
Dt(θ0,α)>0}ν

′Dt(θ0,α)D
′
t(θ0,α)ν +Rn,t

where Rn,t is equal to

1{ ν′
√

n
Dt(θ0,α)>0}

∫ ν′
√

n
Dt(θ0,α)

0

(

x− ν′√
n
Dt(θ0,α)

)

(flog |η∗|(x)− flog |η∗|(0))dx.

By A11, for any ǫ > 0 there exists τ > 0 such that |x| < τ entails |flog |η∗|(x) −
flog |η∗|(0)| < ǫ. It follows that

|Rn,t| ≤ 1

2n
{ν′Dt(θ0,α)}2(ǫ+ 2M1{ ν′

√
n
Dt(θ0,α)>τ}).

By the Hölder and Markov inequalities and A10, we then show that
∑n

t=1 |Rn,t| = o(1)
a.s. Similarly,

Et−1

(

log |η∗t | −
ν′√
n
Dt(θ0,α)

)

1{ ν′
√

n
Dt(θ0,α)<log |η∗

t |<0}

=
1

2n
flog |η∗|(0)1{ ν′

√
n
Dt(θ0,α)<0}ν

′Dt(θ0,α)D
′
t(θ0,α)ν +R∗

n,t

where R∗
n,t is analogous to Rn,t. We thus have

n
∑

t=1

Et−1ξt,n(ν) = flog |η∗|(0)
1

2n

n
∑

t=1

ν′Dt(θ0,α)D
′
t(θ0,α)ν + o(1)

= flog |η∗|(0)ν
′Jν/2 + o(1) a.s.
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Now, note that if X is an integrable random variable and c is a real constant, then the
random variable

Y = (X − c)(1{c<X<0} − 1{0<X<c})

satisfies VarY ≤ −cEY . Using this elementary inequality and the previous results, the

martingale difference ξt,n(ν) := ξt,n(ν)−Et−1ξt,n(ν) satisfies
∑n

t=1Et−1ξ
2

t,n(ν) = oP (1).
It follows that Un(ν) → flog |η∗|(0)ν

′Jαν/2 in probability as n → ∞. The martingale

CLT entails that Tn(ν) converges in distribution to the Gaussian vector
√

2α(1− 2α)ν′N
where N ∼ N (0, Jα). We thus have shown that the finite dimensional distributions of Sn(·)
converge to that of the process S(·). Since the process Sn(·) has convex sample paths, the
convexity lemmas of Knight (1989) and Pollard (1991) show that Sn converges weakly to
the process S. �

A.4. Proofs for the results of Section 4.2

Proof of Theorem 4.2. It will be sufficient to prove the first asymptotic normality result.
The symmetric case can be handled similarly and the proof is available from the authors.
We have

ξn,α = argmin
z∈R

1

n

n
∑

t=1

ρα(η̂t − z).

Thus √
n(ξn,α − ξα) = argmin

z∈R

Qn(z)

where

Qn(z) =
n
∑

t=1

ρα

(

η̂t − ξα − z√
n

)

−
n
∑

t=1

ρα(ηt − ξα).

Let ηt(θ) = ǫt/σ̃t(θ). A Taylor expansion around θ0 yields

η̂t = ηt − ηtD
′
t(θ̂n − θ0) +

1

2
(θ̂n − θ0)

′ ∂
2ηt(θ0)

∂θ∂θ′
(θ̂n − θ0) + oP (n

−1).

We thus have

Qn(z) =

n
∑

t=1

ρα

(

ηt − ξα − ηtD
′
t(θ̂n − θ0)− z√

n
+ oP (n

−1/2)

)

−ρα(ηt − ξα)

= zXn + Yn + In(z) + Jn(z)

where

Xn =
1√
n

n
∑

t=1

(1{ηt<ξα} − α), Yn =
1√
n

n
∑

t=1

Rt,n(1{ηt<ξα} − α),

In(z) =
n
∑

t=1

∫ z/
√
n

0

(1{ηt≤ξα+s} − 1{ηt<ξα})ds,

Jn(z) =
n
∑

t=1

∫ (z+Rt,n)/
√

n

z/
√

n

(1{ηt≤ξα+s} − 1{ηt<ξα})ds



C. Francq and J-M. Zakoïan/Risk-parameter estimation 36

with Rt,n = ηt
{

D′
t

√
n(θ̂n − θ0) + oP (1)

}

.

By the change of variable u = s− z/
√
n, we have Jn(z) =

∑2
i=1 J

(i)
n (z) with J

(i)
n (z) =

∑n
t=1 J

(i)
n,t where

J
(1)
n,t =

∫ Rt,n/
√

n

0

(

1{ηt−ξα−z/
√
n≤u} − 1{ηt−ξα−z/

√
n<0}

)

du,

J
(2)
n,t =

∫ Rt,n/
√

n

0

(

1{ηt−ξα−z/
√
n<0} − 1{ηt−ξα<0}

)

du

=
{

D′
t(θ̂n − θ0) + oP (n

−1/2)
}

ηt1
∗
{ηt−ξα∈(0,z/

√
n)}.

By arguments already used, it follows that

n
∑

t=1

J
(2)
n,t =

(

1√
n

n
∑

t=1

ηt1
∗
{ηt−ξα∈(0,z/

√
n)}D

′
t

)

√
n(θ̂n − θ0) + oP (1).

Note that, for z > 0,

E(ηt1
∗
{ηt−ξα∈(0,z/

√
n)}) =

∫ z/
√
n

0

(x+ ξα)f(x+ ξα)dx = ξαf(ξα)
z√
n
+ o(1/

√
n).

The same equality holds for z ≤ 0. Thus, in view of the independence of ηt and Dt, we
have

E

(

1√
n

n
∑

t=1

ηt1
∗
{ηt−ξα∈(0,z/

√
n)}D

′
t

)

= zξαf(ξα)Ω
′ + o(1).

By similar computations we find

Var

(

1√
n

n
∑

t=1

ηt1
∗
{ηt−ξα∈(0,z/

√
n)}D

′
t

)

= o(1).

It follows that
n
∑

t=1

J
(2)
n,t = zξαf(ξα)Ω

′√n(θ̂n − θ0) + oP (1).

Denote by Et−1X the expectation of a variable X conditional on {θ̂n − θ0, (ηu : u < t)}.
We have, by the change of variable u = ηtv,

Et−1J
(1)
n,t =

∫ D′
t(θ̂n−θ0)+oP (n−1/2)

0

Et−1(ηt1
∗
{ηt∈(ξα+z/

√
n,(ξα+z/

√
n)(1−v)−1)})dv

=
ξ2α
2
fn,t(ξα)(θ̂n − θ0)

′DtD
′
t(θ̂n − θ0) + oP (n

−1)

where fn,t denotes the density of ηt conditional on {θ̂n − θ0, (ηu : u < t)} and o(n−1) is

a function of (θ̂n − θ0) and the past values of ηt. By the arguments used for J
(2)
n,t it can

therefore be shown that J
(1)
n (z) converges in distribution to a random variable which does

not depend on z. Note also that Yn can be subtracted to the objective function Qn(z)

because it does not depend on z. Moreover In(z) → z2

2
f(ξα) in probability as n → ∞.

Finally,

Q̃n(z) := Qn(z)− Yn =
z2

2
f(ξα) + z{Xn + ξαf(ξα)Ω

′√n(θ̂n − θ0)}+OP (1).
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Since the process Q̃n(·) has convex sample paths, the convexity Lemmas of Knight (1989)
and Pollard (1991) show that Q̃n converges weakly to some convex process. By Lemma
2.2 in Davis et al. (1992), we can conclude that

√
n(ξα − ξn,α) = ξαΩ

′√n(θ̂n − θ0) +
1

f(ξα)

1√
n

n
∑

t=1

(1{ηt<ξα} − α)

+oP (1).

We now derive the joint asymptotic distribution of (
√
n(θ̂n − θ0)

′,
√
n(ξα − ξn,α)). The

following Taylor expansion holds

√
n(θ̂n − θ0) =

−J−1

2
√
n

n
∑

t=1

(1− η2t )Dt + oP (1).

Hence

Covas

(

√
n(θ̂n − θ0),

1√
n

n
∑

t=1

(1{ηt<ξα} − α)

)

=
1

2
pαJ

−1Ω

and thus

Varas{
√
n(ξn,α − ξα)} =

{

ξ2α
κ4 − 1

4
+
ξαpα
f(ξα)

}

Ω′J−1Ω+
α(1− α)

f2(ξα)
,

Covas

(√
n(θ̂n − θ0),

√
n(ξα − ξn,α)

)

= λαJ
−1Ω.

We have Ω′J−1Ω = 1 and thus we obtain

Varas{
√
n(ξα − ξn,α)} = ζα.

By the CLT for martingale differences, we get the announced result. �

Proof of Corollary 4.2. The asymptotic normality of the two-step estimator follows
from Theorem 4.2 and the following Taylor expansion of H around (θ0,−ξα)

√
n
(

θ̂2Sn,α − θ0,α
)

=

[

∂H(θ, ξ)

∂(θ′, ξ)

]

(θ0,−ξα)

( √
n
(

θ̂n − θ0
)

√
n(ξα − ξn,α)

)

+ oP (1).

A similar expansion holds for
√
n
(

θ̂S2S
n,α − θ0,α

)

. �

Proof of Corollary 4.3. For the standard GARCH model, we have J−1Ω = 2θ0, and
the asymptotic variance in Theorem 4.2 takes the form

Σα =

( κ4−1
4
J−1 2λαθ0

2λαθ
′
0 ζα

)

.

Moreover,

H(θ, ξ) = ξ2θ
′
+ (0′[1,q+1], β1, . . . , βp)

′,
∂H(θ, ξ)

∂(θ′, ξ)
= [A 2ξθ].
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Therefore

Υα =
κ4 − 1

4
AJ−1A+ 4ξ2α(2λαξα + ζα)θ0θ

′
0

=
κ4 − 1

4
AJ−1A+ 4ξ2α

(

α(1− α)

f2(ξα)
− ξ2α

κ4 − 1

4

)

θ0θ
′
0

=
κ4 − 1

4
A{J−1 − 4θ0θ

′
0}A+ 4ξ2α

α(1− α)

f2(ξα)
θ0θ

′
0.

Similarly

Υ̃α =
κ4 − 1

4
AJ−1A+ 4ξ2α

(

−ξ2α
κ4 − 1

4
+

2α(1− 2α)

4f2(ξα)

)

θ0θ
′
0

=
κ4 − 1

4
A{J−1 − 4θ0θ

′
0}A+

2α(1− 2α)

ξ2αf2(ξα)
Aθ0θ

′
0A.

�

A.5. Proofs for the results of Section 5.1

Proof of Theorem 5.1. We have θ̆n,α = argminθ∈Θ Qn,τ (θ) where

Qn,τ (θ) =
1

n

n
∑

t=1

qt,τ (θ), qt,τ (θ) = ρτ

{

log

(

ǫ−t
σt(θ)

)}

1{ǫt<0}.

We follow the line of proof of Theorem 3.1, replacing the point ii) by

ii′) lim
τ→τ0

E sup
θ∈Θ

|q1,τ (θ)− q1,τ0(θ)| = 0;

ii′′) Eq1,τ0(θ) > Eq1,τ0(θ0), ∀θ 6= θ0.

The point ii′) follows from A13, since

q1,τ (θ)− q1,τ0(θ) = (τ − τ0) log

(

ǫ−1
σ1(θ)

)

1{ǫ1<0}.

Note that when η1 < 0 we have

ρτ

{

log

(

ǫ−1
σ1(θ)

)}

− ρτ
(

log η−1
)

= d

(

η−1 ,
σ1(θ)

σ1(θ0)

)

,

where d(η−1 , σ) = (log η−1 )(1{η−
1 ≤1} − 1{η−

1 ≤σ}) − (log σ)(τ − 1{η−
1 ≤σ}). Since τ =

E
(

1{η−
1 ≤1} | η1 < 0

)

, we have

E
(

d(η−1 , σ) | η1 < 0
)

= E
{

(log η−1 − log σ)
(

1{η−
1 ≤1} − 1{η−

1 ≤σ}

)

| η1 < 0
}

which is strictly positive when σ 6= 1. Point ii”) follows. The rest of the proof is similar to
that of Theorem 3.1. �
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A.6. Proofs for the results of Section 5.2

Proof of Theorem 5.2.

We have already shown that

η̂t = ηt − ηtD
′
t(θ̂n − θ0) +

1

2
(θ̂n − θ0)

′ ∂
2ηt(θ

∗)

∂θ∂θ′
(θ̂n − θ0) + oP (n

−1) (A.6)

:= ηt + vt,n

and

ξα = ξn,α + ξαΩ
′(θ̂n − θ0) +

1

f(ξα)

1

n

n
∑

t=1

(1{ηt<ξα} − α) + oP (1/
√
n)

:= ξn,α + un.

We have
√
n(µn,α − µα) = − 1

α

1√
n

n
∑

t=1

(η̂t1lη̂t<ξn,α + αµα) + oP (1)

and

1√
n

n
∑

t=1

(η̂t1lη̂t<ξn,α + αµα)− 1√
n

n
∑

t=1

(ηt − ξα)1lηt<ξα − 1√
n

n
∑

t=1

(η̂t − ηt)1lηt<ξα

= Vn +
1√
n

n
∑

t=1

ξα1lη̂t<ξn,α +
√
nαµα = Vn +

√
nα{ξα + µα},

where

Vn :=
1√
n

n
∑

t=1

(η̂t − ξα)
(

1lη̂t<ξn,α − 1lηt<ξα

)

= oP (1).

The later equality can be established following the lines of proof of Lemma 2 in Chen
(2008). Note also that, by (A.6) and the ergodic theorem,

− 1√
n

n
∑

t=1

(η̂t − ηt)1lηt<ξα

oP (1)
=

√
n(θ̂n − θ0)

1

n

n
∑

t=1

ηtD
′
t1lηt<ξα

oP (1)
= −µααΩ

′√n(θ̂n − θ0),

writing a
c
= b for a = b+ c.

It follows that

√
n(µn,α − µα)

oP (1)
= − 1

α
√
n

n
∑

t=1

{(ηt − ξα)1lηt<ξα + α(ξα + µα)} − µαΩ
′√n(θ̂n − θ0),

√
n(θ̂n − θ0)

oP (1)
=

−J−1

2
√
n

n
∑

t=1

(1− η2t )Dt.

We have

var

{

1

α
√
n

n
∑

t=1

(ηt − ξα)1lηt<ξα

}

= σ2
α,

varas
{

µαΩ
′√n(θ̂n − θ0)

}

=
κ4 − 1

4
µ2
α

covas

{

1

α
√
n

n
∑

t=1

(ηt − ξα)1lηt<ξα , µαΩ
′√n(θ̂n − θ0)

}

= −µα

2
xα.
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The asymptotic distribution of (
√
n(θ̂n − θ0)

′,
√
n(µn,α − µα)) follows.

Finally, we turn to the asymptotic variance of the ES-parameter in the standard
GARCH. We have

H(θ, µ) = µ2θ
′
+ (0′[1,q+1], β1, . . . , βp)

′,
∂H(θ, µα)

∂(θ′, µ)
= [A∗ 2µαθ]

where A∗ =

(

µ2
αIq+1 0
0 Ip

)

. Therefore the asymptotic variance of H(θ̂n,−µn,α) is

Υ∗
α =

κ4 − 1

4
A∗J−1A∗ + 4µ2

α(2ϕαµα + να)θ0θ
′
0

=
κ4 − 1

4
A∗J−1A∗ + 4µ2

α

(

σ2
α − µ2

α
κ4 − 1

4

)

θ0θ
′
0

=
κ4 − 1

4
A∗{J−1 − 4θ0θ

′
0}A∗ + 4µ2

ασ
2
αθ0θ

′
0.
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